804 research outputs found

    Localization of Atiyah classes

    Get PDF
    We construct the Atiyah classes of holomorphic vector bundles using (1,0)-connections and developing a Chern–Weil type theory, allowing us to effectively compare Chern and Atiyah forms. Combining this point of view with the Čech–Dolbeault cohomology, we prove several results about vanishing and localization of Atiyah classes, and give some applications. In particular, we prove a Bott type vanishing theorem for (not necessarily involutive) holomorphic distributions. As an example we also present an explicit computation of the residue of a singular distribution on the normal bundle of an invariant submanifold that arises from the Camacho–Sad type localization

    Abstract basins of attraction

    Full text link
    Abstract basins appear naturally in different areas of several complex variables. In this survey we want to describe three different topics in which they play an important role, leading to interesting open problems

    Angular distributions of scattered excited muonic hydrogen atoms

    Full text link
    Differential cross sections of the Coulomb deexcitation in the collisions of excited muonic hydrogen with the hydrogen atom have been studied for the first time. In the framework of the fully quantum-mechanical close-coupling approach both the differential cross sections for the nl→n′l′nl \to n'l' transitions and ll-averaged differential cross sections have been calculated for exotic atom in the initial states with the principle quantum number n=2−6n=2 - 6 at relative motion energies Ecm=0.01−15E_{\rm {cm}}=0.01 - 15 eV and at scattering angles θcm=0−180∘\theta_{\rm {cm}}=0 - 180^{\circ}. The vacuum polarization shifts of the nsns-states are taken into account. The calculated in the same approach differential cross sections of the elastic and Stark scattering are also presented. The main features of the calculated differential cross sections are discussed and a strong anisotropy of cross sections for the Coulomb deexcitation is predicted.Comment: 5 pages, 9 figure

    Atomic effects in astrophysical nuclear reactions

    Get PDF
    Two models are presented for the description of the electron screening effects that appear in laboratory nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very well with the recent LUNA experimental result for the break-up reaction He3(He3,2p)He4% He3(He3,2p)He^{4}, which so far defies all available theoretical models. Moreover, multi-electron effects that enhance laboratory reactions of the CNO cycle and other advanced nuclear burning stages, are also studied by means of the Thomas-Fermi model, deriving analytical formulae that establish a lower and upper limit for the associated screening energy. The results of the second model, which show a very satisfactory compatibility with the adiabatic approximation ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production

    Are Antiprotons Forever?

    Get PDF
    Up to one million antiprotons from a single LEAR spill have been captured in a large Penning trap. Surprisingly, when the antiprotons are cooled to energies significantly below 1 eV, the annihilation rate falls below background. Thus, very long storage times for antiprotons have been demonstrated in the trap, even at the compromised vacuum conditions imposed by the experimental set up. The significance for future ultra-low energy experiments, including portable antiproton traps, is discussed.Comment: 12 pages, latex; 4 figures, uufiled. Slightly expanded discussion of expected energy dependence of annihilation cross section and rate, and of estimates of trap pressure, plus minor text improvement

    Fatou flowers and parabolic curves

    Get PDF
    In this survey we collect the main results known up to now (July 2015) regarding possible generalizations to several complex variables of the classical Leau-Fatou flower theorem about holomorphic parabolic dynamics

    Line shape of the muH(3p - 1s) hyperfine transitions

    Get PDF
    The (3p - 1s) X-ray transition to the muonic hydrogen ground state was measured with a high resolution crystal spectrometer. A Doppler effect broadening of the X-ray line was established which could be attributed to different Coulomb de-excitation steps preceding the measured transition. The assumption of a statistical population of the hyperfine levels of the muonic hydrogen ground state was directly confirmed by the experiment and measured values for the hyperfine splitting can be reported. The results allow a decisive test of advanced cascade model calculations and establish a method to extract fundamental strong-interaction parameters from pionic hydrogen experiments.Comment: Submitted to Physical Review Letter

    Pseudo-Hermitian Hamiltonians, indefinite inner product spaces and their symmetries

    Full text link
    We extend the definition of generalized parity PP, charge-conjugation CC and time-reversal TT operators to nondiagonalizable pseudo-Hermitian Hamiltonians, and we use these generalized operators to describe the full set of symmetries of a pseudo-Hermitian Hamiltonian according to a fourfold classification. In particular we show that TPTP and CTPCTP are the generators of the antiunitary symmetries; moreover, a necessary and sufficient condition is provided for a pseudo-Hermitian Hamiltonian HH to admit a PP-reflecting symmetry which generates the PP-pseudounitary and the PP-pseudoantiunitary symmetries. Finally, a physical example is considered and some hints on the PP-unitary evolution of a physical system are also given.Comment: 20 page

    Muonic hydrogen cascade time and lifetime of the short-lived 2S2S state

    Get PDF
    Metastable 2S{2S} muonic-hydrogen atoms undergo collisional 2S{2S}-quenching, with rates which depend strongly on whether the μp\mu p kinetic energy is above or below the 2S→2P{2S}\to {2P} energy threshold. Above threshold, collisional 2S→2P{2S} \to {2P} excitation followed by fast radiative 2P→1S{2P} \to {1S} deexcitation is allowed. The corresponding short-lived μp(2S)\mu p ({2S}) component was measured at 0.6 hPa H2\mathrm{H}_2 room temperature gas pressure, with lifetime τ2Sshort=165−29+38\tau_{2S}^\mathrm{short} = 165 ^{+38}_{-29} ns (i.e., λ2Squench=7.9−1.6+1.8×1012s−1\lambda_{2S}^\mathrm{quench} = 7.9 ^{+1.8}_{-1.6} \times 10^{12} \mathrm{s}^{-1} at liquid-hydrogen density) and population ϵ2Sshort=1.70−0.56+0.80\epsilon_{2S}^\mathrm{short} = 1.70^{+0.80}_{-0.56} % (per μp\mu p atom). In addition, a value of the μp\mu p cascade time, Tcasμp=(37±5)T_\mathrm{cas}^{\mu p} = (37\pm5) ns, was found.Comment: 4 pages, 3 figure
    • …
    corecore